Zadanie 7 Czerwiec 2023 (0-1)   Czerwiec CKE 2023 Wyrażenia algebraiczne Wyrażenia wymierne

Dla każdej liczby rzeczywistej  x   różnej od  0   i  2   wyrażenie  \frac{x^2 + x}{(x-2)^2} \cdot \frac{x - 2}{x}   jest równe

A.    \frac{x^2 + 1}{x - 2}                                  B.      \frac{x+1}{2}                                                C.    \frac{x^2}{(x-2)^2}                                           D.     \frac{x+1}{x-2}

Pokaż odpowiedź

ODP. D 

Rozwiązanie



Rozwiąż podobne zadania

1.

Dla każdej liczby rzeczywistej  x   różnej od  0   i  3   wyrażenie  \frac{x^2}{x + 3} \cdot \frac{(x + 3)^2 }{x^3 - x^2}   jest równe

A.    \frac{x + 3}{x - 1}                                
B.
      \frac{x + 3}{x}                                               
C. 
  \frac{x^2}{x - 1}
D.     \frac{x + 3}{x^2}

Pokaż odpowiedź

ODP. A 

2.

Dla każdej liczby rzeczywistej  x   różnej od  0   i  - 2   wyrażenie  \frac{2x^2 + 4x}{(x + 2)^2} \cdot \frac{x + 2}{x^3}   jest równe

A.    \frac{2(x + 2)}{x^3}                                
B.
      \frac{2}{x^2}                                               
C. 
  \frac{2x}{(x + 2)}
D.     \frac{2}{x^2}

Pokaż odpowiedź

ODP. D 

3.

Dla każdej liczby rzeczywistej  x   różnej od  0, 4   i  - 4   wyrażenie  \frac{x^2}{x + 4} \cdot \frac{x^2 - 16 }{3x^2 - 12x}   jest równe

A.    \frac{1}{3}                                
B.
      \frac{x}{3}                                               
C. 
  \frac{x}{x + 4}
D.     \frac{x^2}{x - 4}

Pokaż odpowiedź

ODP. B